BIM Specification with Revit
About Us:

Johansen Geir
Norconsult Informasjonssystemer AS
Department Head
Project Management

Marius Jablonskis
Norconsult AS
Technology Manager
Concept development
Workflow optimization
What is the AEC Excellence awards?

- International competition with 162 contributions proposed from 29 countries.
- Norconsults winning contribution, Vamma 12, was in the field Infrastructure, Energy and Natural Resources.
- The award was presented November 17th at the international conference Autodesk University in Las Vegas, USA.
The Vamma Project

Norconsult uses reality capture for dynamic visualization of aging hydropower plant in Norway

Old structure. New technologies.
The Vamma hydropower plant is an impressive structure. Located on the River Glomma in Østfold, Norway, it’s the largest river hydropower plant in the country. It’s also old, built originally in 1915. But a century later—when it came time to add a new turbine, generator, and the associated control system and switchgear—the multidisciplinary consultancy firm Norconsult relied on some of the newest technologies in Building Information Modeling (BIM) to ensure complete foreknowledge of the finished product, due in 2019.
Instant insights

One of the most innovative aspects of using BIM on the Vamma 12 project was the use of reality capture technology, which uses photographs and real-world context and integrates them into 3D conceptual models, giving them photorealistic qualities and extremely accurate detail. This process enabled Norconsult to improve their analysis and uncover potential problem areas that, if modeled in the traditional ways, would have been discovered only during the construction phase.

The ability to anticipate issues instantly through BIM simulations was essential to a project as complex as the comprehensive upgrading and expansion of the power plant. Since existing constructions and infrastructure had to be considered while building new ones in close proximity, the technology’s ability to show consequences of geometric changes—and in a fraction of the time taken by older methods—was crucial.
History of Drafting

Plans of a six-room building, a sanctuary or a private house. Clay, late 3rd millennium BC.
History of Drafting
History of Drafting
Standardization

<table>
<thead>
<tr>
<th>Line Group</th>
<th>Narrow Line</th>
<th>Graphic Symbols</th>
<th>Wide Line</th>
<th>Extra Wide Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25mm</td>
<td>0.13 mm</td>
<td>0.18 mm</td>
<td>0.25 mm</td>
<td>0.50 mm</td>
</tr>
<tr>
<td>0.35mm</td>
<td>0.18 mm</td>
<td>0.25 mm</td>
<td>0.35 mm</td>
<td>0.70 mm</td>
</tr>
<tr>
<td>0.50mm</td>
<td>0.25 mm</td>
<td>0.35 mm</td>
<td>0.50 mm</td>
<td></td>
</tr>
<tr>
<td>0.70mm</td>
<td>0.35 mm</td>
<td>0.50 mm</td>
<td>0.70 mm</td>
<td></td>
</tr>
<tr>
<td>1.00mm</td>
<td>0.50 mm</td>
<td>0.70 mm</td>
<td>1.00 mm</td>
<td></td>
</tr>
</tbody>
</table>

BUTT WELDS

<table>
<thead>
<tr>
<th>SQUARE</th>
<th>SCARF</th>
<th>V</th>
<th>BEVEL</th>
<th>U</th>
<th>J</th>
<th>FLARE</th>
<th>FLARE BEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SQUARE: Fillet Weld, Plug Weld, Plug Weld or Projection Weld, Seam Weld, Backing Run or Backing Weld, Surfacing, Flange, WELDS
- SCARF: Edge, CORNER
- V: Complete Penetration from one side, BACKING or SPACER MATERIAL
- BEVEL: FLUSH, CONVEX, CONCAVE

Norconsult Informasjonssystemer
Standardization

Standards catalogue

01.100: Technical drawings

Computer-aided design, see 35.240.10
Graphical symbols for use on technical drawings, see 01.080.30

<table>
<thead>
<tr>
<th>ICS</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.100.01</td>
<td>Technical drawings in general</td>
</tr>
<tr>
<td>01.100.20</td>
<td>Mechanical engineering drawings</td>
</tr>
<tr>
<td>01.100.25</td>
<td>Electrical and electronics engineering drawings</td>
</tr>
<tr>
<td></td>
<td>Including electrical tables, diagrams and charts</td>
</tr>
<tr>
<td>01.100.27</td>
<td>Technical drawings for telecommunications and information technology fields</td>
</tr>
<tr>
<td>01.100.30</td>
<td>Construction drawings</td>
</tr>
<tr>
<td></td>
<td>Including civil engineering drawings</td>
</tr>
<tr>
<td>01.100.40</td>
<td>Drawing equipment</td>
</tr>
<tr>
<td>01.100.99</td>
<td>Other standards related to technical drawings</td>
</tr>
</tbody>
</table>
Computer Aided Drafting (CAD)
Building Information Modeling (BIM)
It’s not enough using the right tools
It’s not enough using the right tools
It’s not enough using the right tools

To fully utilize BIM potential, instead of adapting new technologies to current processes, we need to focus on adapting current processes to new technologies.
Information flow between Specification and Revit
Vamma 12
Made in Norconsult
Integration between Model and "Mengdeliste"
Quality Checked Data
Let's Take a Look
Thank you for your attention

geir.johansen@norconsult.com